Formation of Water in the Warm Atmospheres of Protoplanetary Disks

نویسندگان

  • A. E. Glassgold
  • R. Meijerink
  • J. R. Najita
چکیده

The gas-phase chemistry of water in protoplanetary disks is analyzed with a model based on X-ray heating and ionization of the disk atmosphere. Several uncertain processes appear to play critical roles in generating the column densities of warm water that are detected from disks at infrared wavelengths. The dominant factors are the reactions that form molecular hydrogen, including formation on warm grains, and the ionization and heating of the atmosphere. All of these can work together to produce a region of high water abundances in the molecular transition layer of the inner disk atmosphere, where atoms are transformed into molecules, the temperature drops from thousands to hundreds of Kelvins, and the ionization begins to be dominated by the heavy elements. Grain formation of molecular hydrogen and mechanical heating of the atmosphere can play important roles in this region and directly affect the amount of warm water in protoplanetary disk atmospheres. Thus it may be possible to account for the existing measurements of water emission from Tauri disks without invoking transport of water from cooler to warmer regions. The hydroxyl radical OH is under-abundant in this model of disk atmospheres and requires consideration of additional production and excitation processes. Subject headings: stars:planetary systems: protoplanetary disks – X-rays:stars – astrochemistry

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overcoming Migration during Giant Planet Formation

In the core accretion model, gas giant formation is a race between growth and migration; for a core to become a jovian planet, it must accrete its envelope before it spirals into the host star. We use a multizone numerical model to extend our previous investigation of the “window of opportunity” for gas giant formation within a disk. When the collision cross-section enhancement due to core atmo...

متن کامل

Atmospheres of Protoplanetary Cores: Critical Mass for Nucleated Instability

Understanding atmospheres of protoplanetary cores is crucial for determining the conditions under which giant planets can form by nucleated instability. We systematically study quasi-static atmospheres of accreting protoplanetary cores for different opacity behaviors and realistic planetesimal accretion rates in various parts of protoplanetary nebula. We demonstrate that there are two important...

متن کامل

Radiative Transfer Models of Mid-infrared H2o Lines in the Planet-forming Region of Circumstellar Disks

The study of warm molecular gas in the inner regions of protoplanetary disks is of key importance for the study of planet formation and especially for the transport of H2O and organic molecules to the surfaces of rocky planets/satellites. Recent Spitzer observations have shown that the mid-infrared spectra of protoplanetary disks are covered in emission lines due to water and other molecules. H...

متن کامل

Protoplanetary Gas Disks in the Far Infrared

The physical and chemical conditions in young protoplanetary disks set the boundary conditions for planet formation. Although the dust in disks is relatively easily detected as a far-IR photometric “excess” over the expected photospheric emission, much less is known about the gas phase. It seems clear that an abrupt transition from massive optically thick disks (gas–rich structures where only ∼...

متن کامل

Organic molecules and water in the planet formation region of young circumstellar disks.

The chemical composition of protoplanetary disks is expected to hold clues to the physical and chemical processes that influence the formation of planetary systems. However, characterizing the gas composition in the planet formation region of disks has been a challenge to date. We report here that the protoplanetary disk within 3 astronomical units of AA Tauri possesses a rich molecular emissio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009